To θ or not to θ :

A simulation study on the validity of IRT

Jonathan J. Park, M.A., Netasha K. Pizano, M.A., Kathleen S. J. Preston, PhD.

Table of Contents

- General Research Question
- Impetus for Research
- Purpose
- Simulation Methodology
- Results
- Concluding Remarks

General Research Question

- How do IRT ability estimates perform against classically derived estimates when poorly functioning items are present
- How well do these different testing paradigms identify and eliminate poorly functioning items

Impetus for Research – Applied Research

- Typically assesses test frameworks on established scales
 (ex., Dumenci & Achenbach 2008; Ferrando & Chico 2007)
- Scale modification not discussed at length beyond factor analytic approaches to ensure unidimensionality
- Common finding that IRT performs similar to classically derived methods

Impetus for Research – Simulated Research

- Utilize 'ideal' scales or forego scalar modification
 - Ex., Macdonald & Paunonen, 2002; Xu & Stone, 2012
- Item difficulty and discrimination parameters are optimal for simulated populations
- Circumvent the effects that poorly functioning items may have on model fit

Similar Research

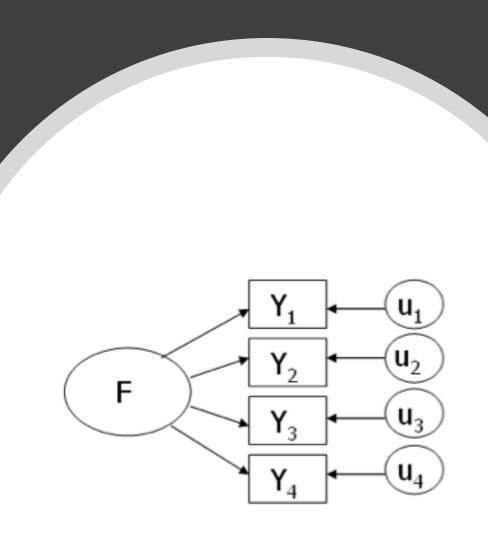
- Mead and Meade (2010) generated algorithm for identifying 'optimal' tests with prioritization of item information and discrimination
- Algorithms developed tests from larger test bank at fixed final length (i.e., $N_{\text{items}} = 50$)
- Selected optimal items across range of ability
 - Best items first approach

Purpose

- Do away with finite test length
- Present information regarding the efficacy of various testing methodologies using rudimentary unsupervised selection algorithms including:
 - Unweighted summed scores
 - Item selection via maximization of Cronbach's α
 - Factor analytic approach with maximization of factor loadings
 - 2PLM with prioritization of item information and item fit

Simulation Methodology

Simulated Ability	$X \sim N(0, 1)$
Sample Sizes	N = 100
	<i>N</i> = 250
	<i>N</i> = 500
Test Length	20-items
	40-items
	80-items
Poor Item Proportions	10%
•	30%
	50%
Item Discriminations $(a)^*$	Poor [0.10; 0.50
	Ideal [1.50; 2.50
ρ _{xx}	1.00
$ ho_{xy}$	0.60


*See, Baker, 1985

- Simulated Responses
 - Participant responses were simulated using the function *sim.raschtype()* from the *sirt* package prior to beginning selection procedures
- Unweighted Summed Scores
 - Simulated responses to all items were summed using the *rowSums*() function from the *base* package

- α-Adjustment
 - Applied *itemAnalysis(*) function from the *CTT* package
 - Selected items that improved α -coefficient by greatest magnitude if removed
- Continue iterative procedure until either condition met:
 - α -coefficient >= 0.80
 - α -coefficient would decrease if any other item were to be removed from the measure

- Factor Analytic Approach
 - Items selected for removal via iterative process via the *factanal()* function in the *stats* packages
 - Remove items with lowest factor loadings until all items were acceptable
 - i.e., ($\lambda \ge 0.30$; see, Brown, 2014)

- 2PLM Approach (see, Preston, 2018)
 - Items tested for unidimensionality/Local Dependence
 - Scalar optimization via prioritization of item information and fit
 - *estimate.mml.2pl()* function within the *TAM* package
 - *IRT.informationCurves()* function for item/test information
 - *IRT.itemfit()* function within the CDM package
- Default settings for all other options
- Iterative Log-Likelihood tests to confirm no significant change to model fit per each item removal

Selected Output (N = 500)

- Final Test Length
- Estimated-to-True Score Correlations
- Estimated-to-Outcome Correlations
- False Positive Rate
- False Negative Rate

Final Test Length (N = 500)

- α-adjustment performed best at small test sizes
- At larger test sizes, CFA achieved best approximations of optimal test length
- IRT procedure consistently generated shortest tests

Table 2.Final Test Length for Large Sample Condition (N = 500)


Test Length

20-Items		Proportion	of Poorly Function	oning Items
	Condition	10%	30%	50%
	SS	20.00 (0.00)	20.00 (0.00)	20.00 (0.00)
	Alpha	16.80 (0.02)	12.73 (0.02)	10.01 (0.01)
	CFA	15.71 (0.04)	12.21 (0.05)	9.25 (0.02)
	IRT	14.78 (0.05)	11.34 (0.06)	7.92 (0.08)
	Expected	18.00	14.00	10.00
40-Items				
	Condition	10%	30%	50%
	SS	40.00 (0.00)	40.00 (0.00)	40.00 (0.00)
	Alpha	40.00 (0.00)	37.58 (0.09)	19.56 (0.14)
	CFA	31.58 (0.10)	24.61 (0.06)	17.41 (0.11)
	IRT	28.93 (0.13)	22.83 (0.08)	16.12 (0.16)
	Expected	36.00	28.00	20.00
80-Items				
	Condition	10%	30%	50%
	SS	80.00 (0.00)	80.00 (0.00)	80.00 (0.00)
	Alpha	80.00 (0.00)	80.00 (0.00)	79.67 (0.10)
	ĊFA	63.53 (0.22)	48.58 (0.36)	34.91 (0.17)
	IRT	50.73 (0.23)	42.60 (0.42)	31.90 (0.20)
	Expected	72.00	56.00	40.00

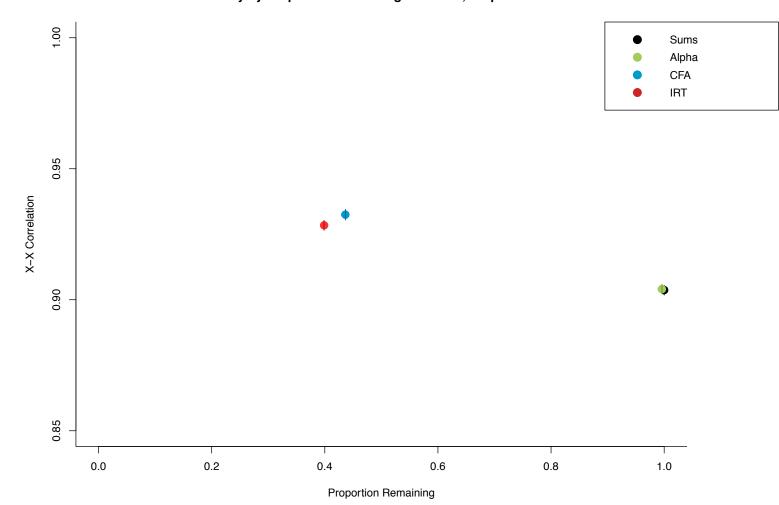
Estimated-to-True Score Correlations

I USED TO THINK CORRELATION IMPLIED CAUSATION. 1

Estimated-to-True Score Correlations

- Accuracy improves with test length
- α-derived tests performed best with short baseline scales
- IRT and CFA emerged as more accurate methods under longer baseline scales

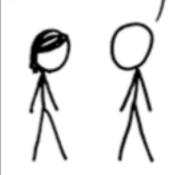
Table 3.


Estimate-to-True Score Correlations for Large Sample Condition (N = 500)

Test Length

20-Items	Proportion of Poorly Functioning Items				
	Condition	10%	30%	50%	
	SS	0.87 (< 0.001)	0.81 (< 0.001)	0.72 (0.001)	
	Alpha	0.87 (< 0.001)	0.85 (< 0.001)	0.81 (0.001)	
	CFA	0.86 (< 0.001)	0.84 (< 0.001)	0.80 (0.001)	
	IRT	0.86 (0.001)	0.83 (0.001)	0.77 (0.004)	
40-Items					
	Condition	10%	30%	50%	
	SS	0.93 (< 0.001)	0.89 (< 0.001)	0.83 (0.001)	
	Alpha	0.93 (< 0.001)	0.90 (< 0.001)	0.88 (< 0.001)	
	CFA	0.93 (< 0.001)	0.91 (< 0.001)	0.88 (0.001)	
	IRT	0.92 (< 0.001)	0.90 (0.001)	0.87 (0.002)	
80-Items					
	Condition	100/	200/	500/	

Condition	10%	30%	50%
SS	0.96 (< 0.001)	0.94 (0.001)	0.90 (0.001)
Alpha	0.96 (< 0.001)	0.94 (0.001)	0.90 (0.001)
CFA	0.96 (< 0.001)	0.95 (0.001)	0.93 (0.001)
IRT	0.95 (< 0.001)	0.94 (0.001)	0.93 (0.001)


Estimate-to-True Score by Test Length

Accuracy by Proportion Remaining – N = 500; Proportion = 50%

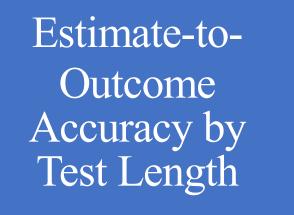
Estimated-to-Outcome Correlations

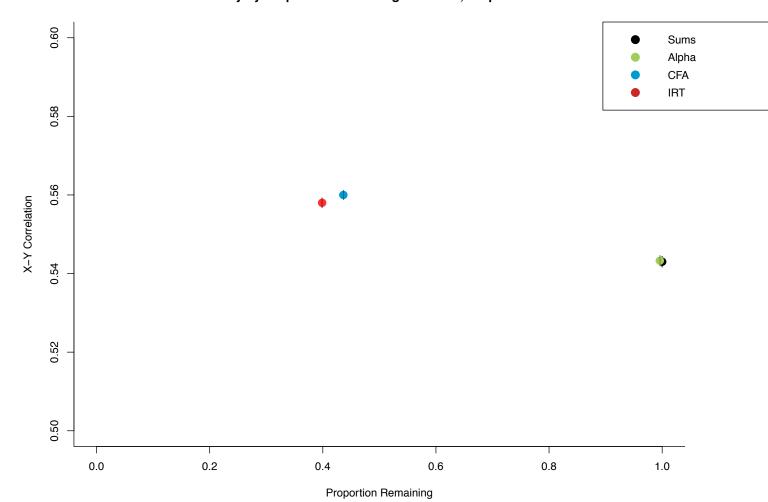
I USED TO THINK CORRELATION IMPLIED CAUSATION. 1

Estimated-to-Outcome Correlations

- Greater accuracy with test length for all methods
- α-adjustment and Factor Analysis strongest for short- to moderate-tests
- Factor Analysis and IRT at longer test lengths

Table 4.

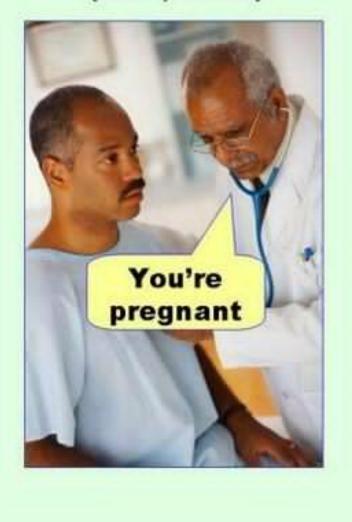

Estimate-to-Outcome Correlations for Large Sample Condition (N = 500)


Test Length

20-Items	Proportion of Poorly Functioning Items			
	Condition	10%	30%	50%
	SS	0.52 (0.001)	0.49 (0.001)	0.44 (0.002)
	Alpha	0.53 (0.001)	0.51 (0.001)	0.49 (0.001)
	CFA	0.52 (0.001)	0.51 (0.001)	0.48 (0.002)
	IRT	0.52 (0.001)	0.5 (0.001)	0.47 (0.003)
	$ ho_{xy}$	0.60	0.60	0.60

40-Items				
	Condition	10%	30%	50%
	SS	0.55 (0.001)	0.53 (0.001)	0.50 (0.002)
	Alpha	0.55 (0.001)	0.54 (0.001)	0.53 (0.002)
	CFA	0.56 (0.001)	0.55 (0.001)	0.53 (0.002)
	IRT	0.55 (0.001)	0.54 (0.001)	0.52 (0.002)
	$ ho_{xy}$	0.60	0.60	0.60

Condition	10%	30%	50%
SS	0.58 (0.001)	0.56 (0.002)	0.54 (0.001)
Alpha	0.58 (0.001)	0.56 (0.002)	0.54 (0.001)
CFA	0.58 (0.001)	0.57 (0.002)	0.56 (0.001)
IRT	0.57 (0.001)	0.57 (0.002)	0.56 (0.001)
ρ_{xy}	0.60	0.60	0.60



Accuracy by Proportion Remaining – N = 500; Proportion = 50%

False Positive Rate

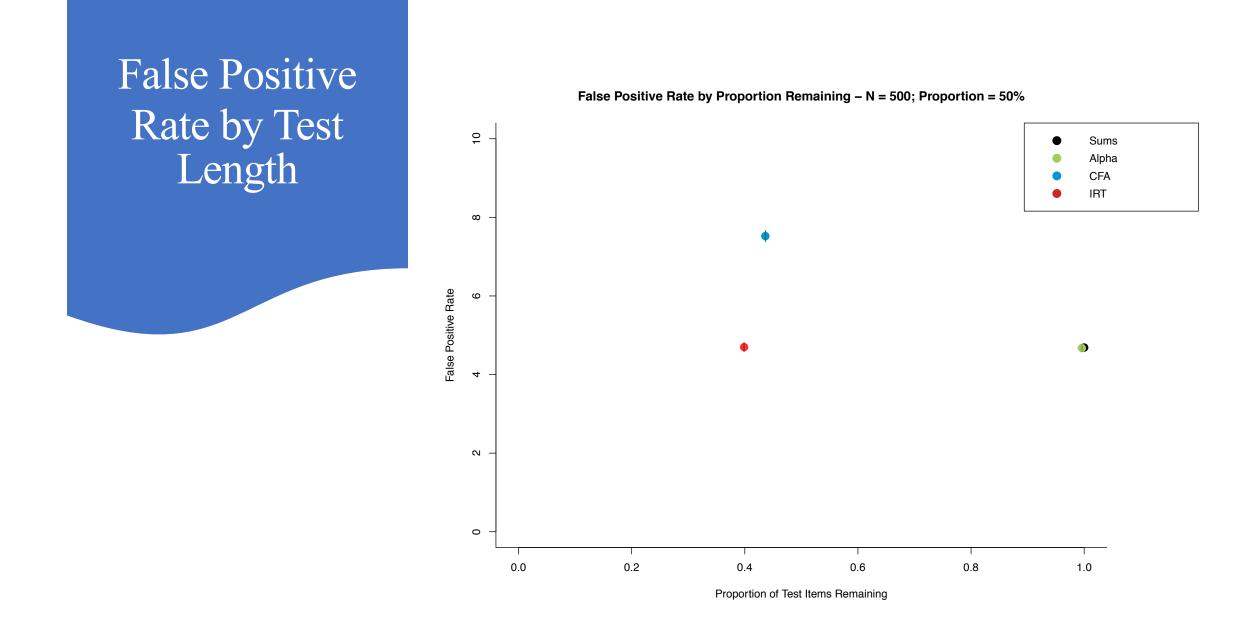
Type I error (false positive)

False Positive Rates

- Unweighted sums and α-derived tests typically outperform other methods across all test length conditions
- IRT performs similarly to the aforementioned methods under 80-item condition

Table 5.False Positive Rates for Large Sample Condition (N = 500)

Test Length


20-Items	Proportion of Poorly Functioning Items				
	Condition	10%	30%	50%	
	SS	4.38 (0.04)	5.27 (0.06)	6.56 (0.10)	
	Alpha	4.14 (0.04)	4.29 (0.06)	4.44 (0.09)	
	CFA	6.26 (0.02)	6.92 (0.03)	7.56 (0.02)	
	IRT	6.47 (0.02)	7.12 (0.04)	7.57 (0.08)	

40-Items

Condition	10%	30%	50%
SS	3.64 (0.04)	4.49 (0.04)	5.75 (0.09)
Alpha	3.65 (0.04)	4.38 (0.04)	3.99 (0.09)
CFA	6.26 (0.03)	6.83 (0.04)	7.46 (0.06)
IRT	4.88 (0.03)	5.42 (0.03)	6.24 (0.07)

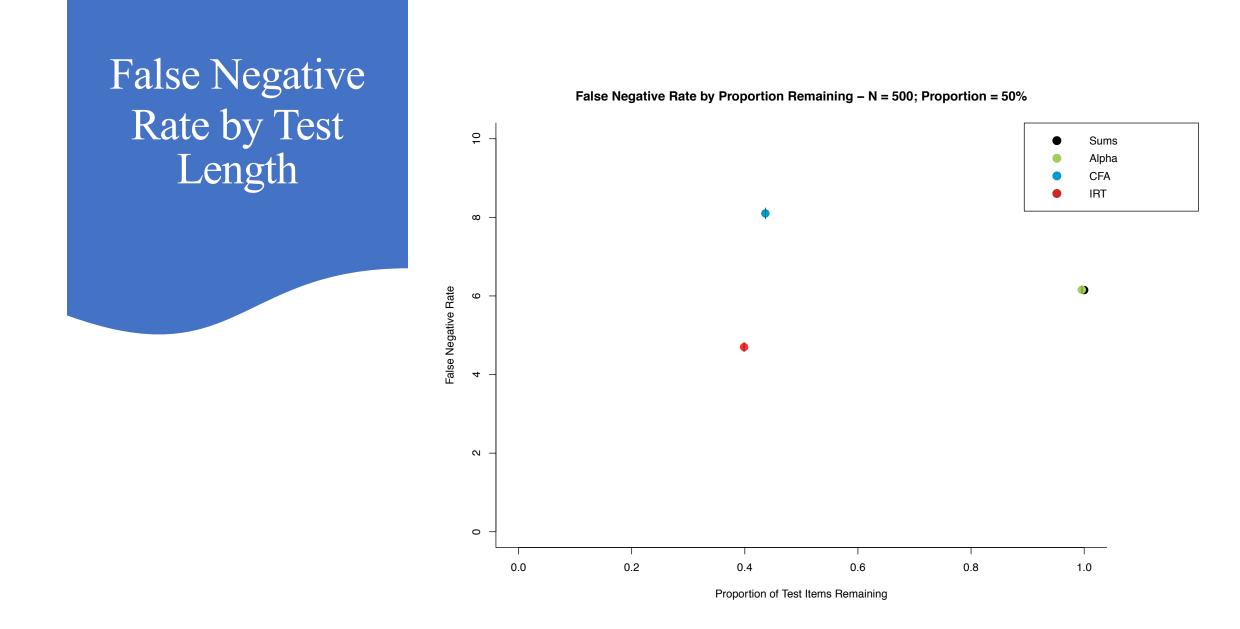
80-Items

_	Condition	10%	30%	50%
	SS	2.92 (0.05)	3.39 (0.12)	4.69 (0.07)
	Alpha	2.92 (0.04)	3.39 (0.12)	4.67 (0.07)
	CFA	6.24 (0.05)	6.91 (0.04)	7.52 (0.02)
_	IRT	3.74 (0.05)	4.00 (0.08)	4.70 (0.05)

False Negative Rate

- Unweighted sums and α-derived tests
 performed best at shortest test length
- IRT outperforms all methods in 40- and 80item conditions across all conditions of poorly functioning items

Table 6.False Negative Rates for Large Sample Condition (N = 500)


Test Length

20-Items	Proportion of Poorly Functioning Items				
	Condition	10%	30%	50%	
	SS	8.24 (0.05)	9.83 (0.06)	11.49 (0.10)	
	Alpha	8.16 (0.05)	9.48 (0.07)	10.95 (0.13)	
	CFA	6.28 (0.02)	7.08 (0.03)	8.15 (0.02)	
	IRT	6.57 (0.03)	7.52 (0.05)	9.18 (0.13)	

Condition	10%	30%	50%
SS	5.76 (0.05)	6.96 (0.04)	8.46 (0.11)
Alpha	5.76 (0.05)	6.81 (0.04)	7.86 (0.13)
CFA	6.29 (0.03)	6.97 (0.05)	8.09 (0.08)
IRT	4.90 (0.04)	5.42 (0.03)	6.31 (0.08)

80-Items

Condition	10%	30%	50%
SS	3.95 (0.06)	4.84 (0.12)	6.15 (0.07)
Alpha	3.95 (0.06)	4.84 (0.11)	6.16 (0.07)
CFA	6.28 (0.05)	7.04 (0.05)	8.09 (0.03)
IRT	3.74 (0.05)	4.00 (0.08)	4.70 (0.05)

Concluding Remarks

- All testing methodologies performed adequately when presented with varying proportions of poorly functioning items
 - Internal-, external-correlations were acceptable across all testing paradigms
- For 20-item conditions, unweighted sums and α -derived scales performed best
- In 80-item conditions, IRT selected shortest scales without the cost of accuracy (i.e., *r*_{xx}, *r_{xy}*, *False positive rate*, *False negative rate*)

Concluding Remarks

- Recommendation for application of IRT when modifying large test banks
- Possible utility in generating parsimonious scales without the cost of precision
- General recommendation for future research in small-scale test modification

Limitations

- Operational definitions for 'poorly' functioning items is dependent on the trait of interest
- Non-normal trait- and item-distributions were not simulated
- Simulation results assume algorithmic modification of scales rather than man-based modification
 - Likely overestimates relationships one is likely to find due to lack of human error

For References and Supplemental Information: